Regressão Logística
Entendendo a regressão logística do zero!
Resultados Esperados
- Entender classificação de dados
- Saber usar e Entender a Logística.
Sumário
#In:
# -*- coding: utf8
from scipy import stats as ss
from sklearn import datasets
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
plt.rcParams['figure.figsize'] = (18, 10)
plt.rcParams['axes.labelsize'] = 20
plt.rcParams['axes.titlesize'] = 20
plt.rcParams['legend.fontsize'] = 20
plt.rcParams['xtick.labelsize'] = 20
plt.rcParams['ytick.labelsize'] = 20
plt.rcParams['lines.linewidth'] = 4
#In:
plt.ion()
plt.style.use('seaborn-colorblind')
plt.rcParams['figure.figsize'] = (12, 8)
#In:
def despine(ax=None):
if ax is None:
ax = plt.gca()
# Hide the right and top spines
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# Only show ticks on the left and bottom spines
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
Regressão Logística
Abaixo, temos um conjunto de dados anônimos de aproximadamente 284 lances do jogador Lebron James. Como é comum em variáveis categóricas, representamos a variável dependente como 0 (errou a cesta) ou 1 (acertou a cesta). Esta será a nossa resposta que queremos prever.
#In:
df = pd.read_csv('https://media.githubusercontent.com/media/icd-ufmg/material/master/aulas/21-Logistica/lebron.csv')
df.head()
game_date | minute | opponent | action_type | shot_type | shot_distance | shot_made | |
---|---|---|---|---|---|---|---|
0 | 20170415 | 10 | IND | Driving Layup Shot | 2PT Field Goal | 0 | 0 |
1 | 20170415 | 11 | IND | Driving Layup Shot | 2PT Field Goal | 0 | 1 |
2 | 20170415 | 14 | IND | Layup Shot | 2PT Field Goal | 0 | 1 |
3 | 20170415 | 15 | IND | Driving Layup Shot | 2PT Field Goal | 0 | 1 |
4 | 20170415 | 18 | IND | Alley Oop Dunk Shot | 2PT Field Goal | 0 | 1 |
#In:
df.shape
(384, 7)
Vamos iniciar observando a quantidade de acertos por distância da cesta.
#In:
n = df.shape[0]
plt.scatter(df['shot_distance'],
df['shot_made'],
s=80, alpha=0.8, edgecolors='k')
plt.xlabel('Distância (feet)')
plt.ylabel('Cesta? (1=sim; 0=não)')
despine()
Adicionando algum ruído para melhorar o plot. Observe como os dados se concentram do lado esquerdo.
#In:
n = df.shape[0]
plt.scatter(df['shot_distance'] + np.random.normal(0, 0.05, size=n),
df['shot_made'] + np.random.normal(0, 0.05, size=n),
s=80, alpha=0.8, edgecolors='k')
plt.xlabel('Distância (feet)')
plt.ylabel('Cesta? (1=sim; 0=não) + Ruído.')
despine()
Como identificar quando Lebron acerta ou erra? Uma primeira tentativa óbvia é usar regressão linear e encontrar o melhor modelo. Observe como a mesma tenta capturar os locais de maior concentração de pontos.
#In:
sns.regplot(x='shot_distance', y='shot_made', data=df, n_boot=10000,
x_jitter=.1, y_jitter=.1,
line_kws={'color':'magenta', 'lw':4},
scatter_kws={'edgecolor':'k', 's':80, 'alpha':0.8})
plt.xlabel('Distância (feet)')
plt.ylabel('Cesta? (1=sim; 0=não)')
despine()
O resultado é uma curva com inclinação negativa.
#In:
ss.linregress(df['shot_distance'], df['shot_made'])
LinregressResult(slope=-0.01405519658334979, intercept=0.715428886374525, rvalue=-0.2986530102053083, pvalue=2.3711855177639454e-09, stderr=0.0022980071639352555, intercept_stderr=0.03449702671924952)
Mas essa abordagem leva a alguns problemas imediatos:
Gostaríamos que nossos resultados previstos fossem 0 ou 1. Tudo bem se eles estiverem entre 0 e 1, já que podemos interpretá-los como probabilidades - uma saída de 0,25 pode significar 25% de chance de ser um membro que paga. Mas as saídas do modelo linear podem ser números positivos enormes ou até números negativos, o que não fica claro como interpretar.
O que gostaríamos, ao contrário, é que valores positivos grandes de $\mathbf{x_i}~ . \mathbf{\theta}$ (ou
np.dot(x_i,theta)
) correspondam a probabilidades próximas a 1 e que valores negativos grandes correspondam a probabilidades próximas a 0. Podemos conseguir isso aplicando outra função ao resultado.
A Função Logística
No caso da regressão logística, a gente usa a função logística:
#In:
def sigmoid(X, theta):
return 1.0 / (1.0 + np.exp(-X.dot(theta)))
À medida que sua entrada se torna grande e positiva, ela se aproxima e se aproxima de 1. À medida que sua entrada se torna grande e negativa, ela se aproxima e se aproxima de 0. Além disso, ela tem a propriedade conveniente que sua derivada é dada por:
#In:
X = np.linspace(-10, 10, 100)[:, None] # vira um vetor coluna
y = sigmoid(X, theta=np.array([1]))
plt.plot(X, y)
despine()
A medida que sua entrada se torna grande e positiva, ela se aproxima e se aproxima de 1. À medida que sua entrada se torna grande e negativa, ela se aproxima e se aproxima de 0. Podemos inverter a mesma alterando o valor de theta.
#In:
X = np.linspace(-10, 10, 100)[:, None] # vira um vetor coluna
y = sigmoid(X, theta=np.array([-1]))
plt.plot(X, y)
despine()
Além disso, ela tem a propriedade conveniente que sua derivada é dada por:
#In:
def logistic_prime(X, theta):
return sigmoid(X, theta) * (1 - sigmoid(X, theta))
Oberseve a derivada em cada ponto.
#In:
plt.plot(X, logistic_prime(X, np.array([1])))
[<matplotlib.lines.Line2D at 0x7f3bca802770>]
Daqui a pouco vamos usar a mesma para ajustar um modelo:
\[y_i = f(x_i\theta) + \epsilon_i\]onde $f$ é a função logística (logistic
).
Note também que $x_i\theta$, para $j$ variáveis independentes, nada mais é que o modelo linear visto nas aulas anteriores, que é calculado e dado como entrada para a função logística:
\[x_i\theta = \theta_0 + \theta_1 x_1 + \cdots + \theta_j x_j\]Lembre-se de que, para a regressão linear, ajustamos o modelo minimizando a soma dos erros quadrados, o que acaba escolhendo o $\theta$ que maximiza a probabilidade dos dados.
Aqui os dois não são equivalentes, por isso usaremos gradiente descendente para maximizar a verossimilhança diretamente. Isso significa que precisamos calcular a função de verossimilhança e seu gradiente.
Dado algum $\theta$, nosso modelo diz que cada $y_i$ deve ser igual a 1 com probabilidade $f(x_i\theta)$ e 0 com probabilidade $1 - f(x_i\theta)$.
Em particular, a PDF para $y_i$ pode ser escrita como:
\[p(y_i~|~x_i,\theta) = f(x_i\theta)^{y_i}(1-f(x_i\theta))^{1-y_i}\]Se $y_i$ é $0$, isso é igual a:
\[1-f(x_i\theta)\]e se $y_i$ é $1$, é igual a:
\[f(x_i\theta)\]Acontece que é realmente mais simples maximizar o logaritmo da verossimilhança (log likelihood):
\[\log ll_{\theta}(y_i~|~x_i) = y_i \log f(x_i\theta) + (1-y_i) \log (1-f(x_i\theta))\]Como o logaritmo é uma função estritamente crescente, qualquer $\theta$ que maximize o logaritmo da verossimilhança também maximiza a verossimilhança, e vice-versa.
Cross Entropy
Ao invés de trabalhar na verossimilhança, vamos inverter a mesma (negar). Esta é a definição de cross entropy para a regressão logística. Nos slides da aula derivamos a equivalência entre as duas. Slides.
\[L(\theta) = -n^{-1}\sum_i \big((1-y_i)\log_2(1-f_{\theta}(x_i)) + y_i\log_2(f_{\theta}(x_i))\big)\]A equação acima é a cross-entropy média por observação.
#In:
def cross_entropy_one_sample(x_i, y_i, theta):
# também podemos escrever y_i * np.log(sigmoid(np.dot(x_i, beta)))
if y_i == 1:
return -np.log(sigmoid(np.dot(x_i, theta)))
else:
return -np.log(1 - sigmoid(np.dot(x_i, theta)))
O clip abaixo limita os valores para 0.0001 e 0.9999, evita imprecisões numéricas. Ou seja, se o vetor tiver um valor 1.01 por erro numérico, corrigimos para 0.9999.
#In:
def cross_entropy_mean(X, y, theta):
yp = y > 0.5
logit = sigmoid(X, theta)
logit = np.clip(logit, 0.00001, 0.99999)
return -(yp * np.log(logit) + (1 - yp) * np.log(1 - logit)).mean()
A derivada da mesma tem uma forma similar ao da regressão linear. Veja a derivação nos Slides. Partindo da derivada da logística acima, chegamos em:
\[L'(\theta) = -n^{-1}\sum_i \big(-\frac{(1-y_i)f'_{\theta}(x_i)}{1- f_{\theta}(x_i)} + \frac{y_if'_{\theta}(x_i) }{f_{\theta}(x_i)}\big)\]Simplificando:
\[L'(\theta) = -n^{-1}\sum_i \big(-\frac{(1-y_i)f'_{\theta}(x_i)}{1- f_{\theta}(x_i)} + \frac{y_if'_{\theta}(x_i) }{f_{\theta}(x_i)}\big) \\ L'(\theta) = -n^{-1}\sum_i \big(-\frac{(1-y_i)}{1- f_{\theta}(x_i)} + \frac{y_i}{f_{\theta}(x_i)}\big)f_{\theta}(x_i)(1-f_{\theta}(x_i)) \\ L'(\theta) = -n^{-1}\sum_i \big(-\frac{(1-y_i)}{1- f_{\theta}(x_i)} + \frac{y_i}{f_{\theta}(x_i)}\big)f_{\theta}(x_i)(1-f_{\theta}(x_i)) \\ L'(\theta) = -n^{-1}\sum_i (y_i - f_{\theta}(x_i)) x_i\]Escrevendo em forma vetorizada. Caso não entenda, veja o material da regressão linear múltipla.
#In:
def derivadas(theta, X, y):
return -((y - sigmoid(X, theta)) * X.T).mean(axis=1)
Podemos otimizar por gradiente descendente.
#In:
def gd(X, y, lambda_=0.01, tol=0.0000001, max_iter=10000):
theta = np.ones(X.shape[1])
print('Iter {}; theta = '.format(0), theta)
old_err = np.inf
i = 0
while True:
# Computar as derivadas
grad = derivadas(theta, X, y)
# Atualizar
theta_novo = theta - lambda_ * grad
# Parar quando o erro convergir
err = cross_entropy_mean(X, y, theta)
if np.abs(old_err - err) <= tol:
break
theta = theta_novo
old_err = err
print('Iter {}; theta = {}; cross_e = {}'.format(i+1, theta, err))
i += 1
if i == max_iter:
break
return theta
Executando nos dados. Note o intercepto, necessário.
#In:
new_df = df[['shot_distance']].copy()
new_df['intercepto'] = 1
X = new_df[['intercepto', 'shot_distance']].values
y = df['shot_made'].values
X[:10]
array([[ 1, 0],
[ 1, 0],
[ 1, 0],
[ 1, 0],
[ 1, 0],
[ 1, 0],
[ 1, 7],
[ 1, 23],
[ 1, 25],
[ 1, 11]])
#In:
y[:10]
array([0, 1, 1, 1, 1, 1, 1, 1, 1, 0])
#In:
theta = gd(X, y)
Iter 0; theta = [1. 1.]
Iter 1; theta = [0.99639116 0.93815854]; cross_e = 3.8372185688014135
Iter 2; theta = [0.99280026 0.87634372]; cross_e = 3.7972328908301627
Iter 3; theta = [0.98922885 0.81455913]; cross_e = 3.7523457095542145
Iter 4; theta = [0.98567869 0.7528091 ]; cross_e = 3.701900424045673
Iter 5; theta = [0.98215177 0.69109896]; cross_e = 3.647864840031765
Iter 6; theta = [0.97865039 0.62943541]; cross_e = 3.583606296758237
Iter 7; theta = [0.97517726 0.56782707]; cross_e = 3.50879824690689
Iter 8; theta = [0.97173556 0.50628547]; cross_e = 3.417271400163878
Iter 9; theta = [0.96832919 0.44482658]; cross_e = 3.307931926255197
Iter 10; theta = [0.96496306 0.38347379]; cross_e = 3.1751856571604953
Iter 11; theta = [0.9616436 0.32226391]; cross_e = 2.9128724140347977
Iter 12; theta = [0.95837982 0.26126117]; cross_e = 2.5431525030105306
Iter 13; theta = [0.95518564 0.20059524]; cross_e = 2.1708964854025012
Iter 14; theta = [0.95208606 0.14057961]; cross_e = 1.8035797342409914
Iter 15; theta = [0.9491355 0.08211144]; cross_e = 1.4463534560501126
Iter 16; theta = [0.94647105 0.02794264]; cross_e = 1.1139902278387301
Iter 17; theta = [ 0.94439844 -0.01502339]; cross_e = 0.8454901148502353
Iter 18; theta = [ 0.94319451 -0.03987182]; cross_e = 0.6962963655904879
Iter 19; theta = [ 0.94262735 -0.05114948]; cross_e = 0.6510824204563155
Iter 20; theta = [ 0.94235561 -0.05615747]; cross_e = 0.6418877615217594
Iter 21; theta = [ 0.94221287 -0.05844412]; cross_e = 0.6400578721776015
Iter 22; theta = [ 0.94212831 -0.0595079 ]; cross_e = 0.6396734531930218
Iter 23; theta = [ 0.94207067 -0.06000727]; cross_e = 0.6395897388833359
Iter 24; theta = [ 0.94202567 -0.06024238]; cross_e = 0.6395711075024405
Iter 25; theta = [ 0.94198664 -0.06035289]; cross_e = 0.6395668558255755
Iter 26; theta = [ 0.94195046 -0.06040444]; cross_e = 0.6395658136702747
Iter 27; theta = [ 0.94191565 -0.06042805]; cross_e = 0.6395654915033199
Iter 28; theta = [ 0.94188151 -0.06043842]; cross_e = 0.6395653313656807
Iter 29; theta = [ 0.9418477 -0.0604425]; cross_e = 0.6395652078720264
Iter 30; theta = [ 0.94181407 -0.06044359]; cross_e = 0.639565092809531
Iter 31; theta = [ 0.94178054 -0.06044328]; cross_e = 0.6395649798259518
Iter 32; theta = [ 0.94174707 -0.06044229]; cross_e = 0.6395648674903618
Iter 33; theta = [ 0.94171366 -0.06044098]; cross_e = 0.6395647554800971
Iter 34; theta = [ 0.94168029 -0.06043953]; cross_e = 0.6395646437221099
Iter 35; theta = [ 0.94164695 -0.060438 ]; cross_e = 0.6395645321995785
Iter 36; theta = [ 0.94161366 -0.06043644]; cross_e = 0.6395644209083472
Iter 37; theta = [ 0.94158039 -0.06043487]; cross_e = 0.6395643098471138
Iter 38; theta = [ 0.94154717 -0.06043329]; cross_e = 0.63956419901522
Iter 39; theta = [ 0.94151397 -0.06043171]; cross_e = 0.6395640884121528
Iter 40; theta = [ 0.94148081 -0.06043013]; cross_e = 0.6395639780374336
Iter 41; theta = [ 0.94144769 -0.06042855]; cross_e = 0.6395638678905909
Iter 42; theta = [ 0.9414146 -0.06042697]; cross_e = 0.6395637579711569
Iter 43; theta = [ 0.94138154 -0.0604254 ]; cross_e = 0.6395636482786647
Iter 44; theta = [ 0.94134852 -0.06042382]; cross_e = 0.639563538812648
Iter 45; theta = [ 0.94131553 -0.06042225]; cross_e = 0.6395634295726422
Iter 46; theta = [ 0.94128258 -0.06042068]; cross_e = 0.6395633205581834
Iter 47; theta = [ 0.94124966 -0.0604191 ]; cross_e = 0.6395632117688083
Iter 48; theta = [ 0.94121677 -0.06041754]; cross_e = 0.6395631032040551
Iter 49; theta = [ 0.94118392 -0.06041597]; cross_e = 0.6395629948634624
Iter 50; theta = [ 0.9411511 -0.0604144]; cross_e = 0.6395628867465701
Iter 51; theta = [ 0.94111831 -0.06041284]; cross_e = 0.639562778852919
Iter 52; theta = [ 0.94108556 -0.06041128]; cross_e = 0.6395626711820507
Iter 53; theta = [ 0.94105285 -0.06040971]; cross_e = 0.6395625637335077
Iter 54; theta = [ 0.94102016 -0.06040815]; cross_e = 0.6395624565068339
Iter 55; theta = [ 0.94098751 -0.0604066 ]; cross_e = 0.6395623495015733
Iter 56; theta = [ 0.9409549 -0.06040504]; cross_e = 0.6395622427172717
Iter 57; theta = [ 0.94092232 -0.06040349]; cross_e = 0.639562136153475
Iter 58; theta = [ 0.94088977 -0.06040193]; cross_e = 0.6395620298097308
Iter 59; theta = [ 0.94085725 -0.06040038]; cross_e = 0.6395619236855871
Iter 60; theta = [ 0.94082477 -0.06039883]; cross_e = 0.639561817780593
Iter 61; theta = [ 0.94079233 -0.06039728]; cross_e = 0.6395617120942984
Iter 62; theta = [ 0.94075991 -0.06039574]; cross_e = 0.6395616066262543
Iter 63; theta = [ 0.94072753 -0.06039419]; cross_e = 0.6395615013760125
Iter 64; theta = [ 0.94069519 -0.06039265]; cross_e = 0.6395613963431259
Iter 65; theta = [ 0.94066287 -0.06039111]; cross_e = 0.6395612915271479
Iter 66; theta = [ 0.94063059 -0.06038957]; cross_e = 0.6395611869276332
Iter 67; theta = [ 0.94059835 -0.06038803]; cross_e = 0.6395610825441372
Iter 68; theta = [ 0.94056613 -0.06038649]; cross_e = 0.6395609783762164
Iter 69; theta = [ 0.94053395 -0.06038496]; cross_e = 0.6395608744234279
Iter 70; theta = [ 0.94050181 -0.06038342]; cross_e = 0.63956077068533
Iter 71; theta = [ 0.94046969 -0.06038189]; cross_e = 0.6395606671614817
Iter 72; theta = [ 0.94043761 -0.06038036]; cross_e = 0.6395605638514431
Iter 73; theta = [ 0.94040556 -0.06037883]; cross_e = 0.6395604607547749
Iter 74; theta = [ 0.94037355 -0.0603773 ]; cross_e = 0.6395603578710389
Iter 75; theta = [ 0.94034157 -0.06037578]; cross_e = 0.6395602551997979
Iter 76; theta = [ 0.94030962 -0.06037425]; cross_e = 0.6395601527406152
Iter 77; theta = [ 0.94027771 -0.06037273]; cross_e = 0.6395600504930554
Iter 78; theta = [ 0.94024582 -0.06037121]; cross_e = 0.6395599484566838
Iter 79; theta = [ 0.94021397 -0.06036969]; cross_e = 0.6395598466310667
Iter 80; theta = [ 0.94018216 -0.06036817]; cross_e = 0.639559745015771
Iter 81; theta = [ 0.94015037 -0.06036665]; cross_e = 0.6395596436103648
Iter 82; theta = [ 0.94011862 -0.06036514]; cross_e = 0.6395595424144168
Iter 83; theta = [ 0.94008691 -0.06036363]; cross_e = 0.639559441427497
Iter 84; theta = [ 0.94005522 -0.06036211]; cross_e = 0.6395593406491759
Iter 85; theta = [ 0.94002357 -0.0603606 ]; cross_e = 0.6395592400790248
Iter 86; theta = [ 0.93999195 -0.0603591 ]; cross_e = 0.6395591397166162
Iter 87; theta = [ 0.93996036 -0.06035759]; cross_e = 0.6395590395615234
Agora vamos pegar os valores maiores do que 0.5 como previsões.
#In:
previsoes = sigmoid(X, theta) > 0.5
print(previsoes)
[ True True True True True True True False False True True True
True True True True True True True False True True False True
True True False True True True True False False True True True
False True False True False True False False True True False True
False True True True False False True False False False False True
True True True True False False False True True True True True
True True True True True True True True True False True True
True True True True True True False False True True True True
True False False True True True True False True False False True
False False True True False False True True True True True False
False False True True True False False True False True True False
True True False True False True False False True False False False
True False True False False True True False True True False False
True True False False False False False False False False True False
True True True True True True True False True True True False
True True True True True False True True False False False False
True True False True True True False False False False True True
True False False False True False False False True True False True
False True True False True False False False True False True True
True True True True False False True False True True True True
True False True False True False False True False True True True
True False False True True False True True True False False True
False False False True False True False True True True False True
False False False True True True True True True False True True
True True True True True True True True True True True False
True False False False True True False True False False True False
True False False True True False True False False True True True
True True True False True True True False True True True False
True False True True False True False True True True True False
False False False False True True True True True True False False
True False True True False True True False True True False True
False True True True True False True True True True True True]
Vamos ver nosso acerto
#In:
print(previsoes == y)
[False True True True True True True False False False False True
True False False True False False True True False True False False
True True False True True False True True True True True False
True True True False False False False True False True False True
True False False False False True True False False True True True
True True False True False True True False True True False False
True False False False True True True True True True True True
False True True False False False False True True True True False
True True True False False False True False True False True False
False False False True False True True False True False True False
False True True True True False False True True True False True
True True False False True True True True True False True False
True True True True False True True True True True False True
False True False True False True True True False True False True
True True True True True True True True False True True True
False True False True False True True True False True True True
True False False True False True False False False True False True
True False False True True True False True True True True True
True False False True False True True True True True True False
True True True False True False True True True False True True
True False False False True True False False True True True True
True False True True True True False True True True True True
False False False False True True False True True True True False
False True True True True False False False True True False True
True False False True True False False True True True True False
True False True True True True False True False True True False
True False False True False True True True True False True False
True False False False True False False True False True False True
True False True True True True False False True True False True
False False True True False False True True True False False False
False True False True True True False False True True True True
True True True False True True True True True True False True]
Taxa de acertos
#In:
print((previsoes == y).mean())
0.6171875
Logística com SKLearn
Observe como otimiza a função de forma correta. Para não gastar mais tempo com código na mão, ajustes de taxas de perda, etc etc etc. Podemos usar sklearn
#In:
from sklearn.linear_model import LogisticRegression
#In:
# loss = log, logistic
# penalty = none, sem regularizar
# fit_intercept = false, colocamos na marra em X já um intercepto
# penalty == none pois não vamos regularizar
# solver indica como o sklearn vai otimizar
model = LogisticRegression(penalty='none', fit_intercept=False, solver='lbfgs')
model.fit(X, y) ### Execute gradiente descendente!!!
LogisticRegression(fit_intercept=False, penalty='none')
Fazendo treino e testes!
#In:
X_train = X[:200]
X_test = X[200:]
y_train = y[:200]
y_test = y[200:]
model = LogisticRegression(penalty='none', fit_intercept=False, solver='lbfgs')
model = model.fit(X_train, y_train)
O modelo não é muito bom nessa base :-( Note que o resultado é quase o mesmo do nosso GD na mão.
#In:
model.predict(X_train)
(y_train == model.predict(X_train)).mean()
0.6
#In:
model.predict(X_test)
(y_test == model.predict(X_test)).mean()
0.6358695652173914
Colocando mais features
#In:
X = df[['shot_distance', 'minute']].values
X_train = X[:200]
X_test = X[200:]
y_train = y[:200]
y_test = y[200:]
model = LogisticRegression(penalty='none', fit_intercept=True, solver='lbfgs')
model = model.fit(X_train, y_train)
#In:
model.predict(X_test)
(y_test == model.predict(X_test)).mean()
0.6630434782608695
Vamos agora colocar bastante features. Todo valor categórico vai virar uma coluna, esse é o onehot method.
#In:
df_dummies = pd.get_dummies(df, 'action_type', 'shot_type', 'opponent', drop_first=True)
del df_dummies['game_date']
df_dummies.head()
minute | shot_distance | shot_made | action_typeshot_typeGSW | action_typeshot_typeIND | action_typeshot_typeTOR | action_typeshot_typenan | action_typeshot_typeAlley Oop Layup shot | action_typeshot_typeCutting Dunk Shot | action_typeshot_typeCutting Finger Roll Layup Shot | ... | action_typeshot_typeRunning Reverse Layup Shot | action_typeshot_typeStep Back Jump shot | action_typeshot_typeTip Layup Shot | action_typeshot_typeTurnaround Fadeaway Bank Jump Shot | action_typeshot_typeTurnaround Fadeaway shot | action_typeshot_typeTurnaround Hook Shot | action_typeshot_typeTurnaround Jump Shot | action_typeshot_typenan | action_typeshot_type3PT Field Goal | action_typeshot_typenan | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 11 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 14 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 15 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 18 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 rows × 43 columns
Atributos categóricos não podem ser usado como valores numéricos. Sempre pense em uma distância, não faz sentido para um shot-type. Ao colocar casa categoria em uma coluna, o algoritmo trata como presença e ausência do atributo.
#In:
X = df_dummies.values
X_train = X[:200]
X_test = X[200:]
y_train = y[:200]
y_test = y[200:]
model = LogisticRegression(penalty='none', fit_intercept=True, solver='lbfgs')
model = model.fit(X_train, y_train)
Quase perfeito
#In:
model.predict(X_test)
(y_test == model.predict(X_test)).mean()
1.0
Dados Sintéticos
Para garantir que nosso GD está mais ou menos ok, vamos usar dados sintéticos.
Observe com dados bem comportados como a previsão é quase perfeita! Como esperado.
#In:
X, y = datasets.make_blobs(n_samples=300, centers=2, n_features=2)
ones = y == 1
plt.scatter(X[:, 0][ones], X[:, 1][ones], edgecolors='k', s=80)
plt.scatter(X[:, 0][~ones], X[:, 1][~ones], edgecolors='k', s=80)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('A cor é a classe')
despine()
#In:
X_train = X[:200]
X_test = X[200:]
y_train = y[:200]
y_test = y[200:]
theta = gd(X_train, y_train)
Iter 0; theta = [1. 1.]
Iter 1; theta = [1.00003459 0.99998913]; cross_e = 0.0005682805609359956
Iter 2; theta = [1.00006917 0.99997827]; cross_e = 0.000568149185944687
Iter 3; theta = [1.00010375 0.99996741]; cross_e = 0.0005680178731282264
Iter 4; theta = [1.00013832 0.99995655]; cross_e = 0.0005678866224422724
Iter 5; theta = [1.00017287 0.99994569]; cross_e = 0.000567755433842533
Iter 6; theta = [1.00020742 0.99993484]; cross_e = 0.0005676243072847686
Iter 7; theta = [1.00024197 0.99992399]; cross_e = 0.0005674932427247517
Iter 8; theta = [1.0002765 0.99991314]; cross_e = 0.0005673622401183308
Iter 9; theta = [1.00031103 0.99990229]; cross_e = 0.0005672312994213654
Iter 10; theta = [1.00034554 0.99989145]; cross_e = 0.0005671004205897849
Iter 11; theta = [1.00038005 0.99988061]; cross_e = 0.0005669696035795567
Iter 12; theta = [1.00041455 0.99986977]; cross_e = 0.0005668388483466601
Iter 13; theta = [1.00044905 0.99985893]; cross_e = 0.0005667081548471447
Iter 14; theta = [1.00048353 0.99984809]; cross_e = 0.0005665775230371047
Iter 15; theta = [1.00051801 0.99983726]; cross_e = 0.0005664469528726565
Iter 16; theta = [1.00055247 0.99982643]; cross_e = 0.0005663164443099674
Iter 17; theta = [1.00058693 0.9998156 ]; cross_e = 0.0005661859973052512
Iter 18; theta = [1.00062139 0.99980477]; cross_e = 0.0005660556118147544
Iter 19; theta = [1.00065583 0.99979395]; cross_e = 0.0005659252877947753
Iter 20; theta = [1.00069026 0.99978313]; cross_e = 0.0005657950252016403
Iter 21; theta = [1.00072469 0.99977231]; cross_e = 0.000565664823991745
Iter 22; theta = [1.00075911 0.99976149]; cross_e = 0.0005655346841214816
Iter 23; theta = [1.00079352 0.99975068]; cross_e = 0.0005654046055473221
Iter 24; theta = [1.00082792 0.99973987]; cross_e = 0.0005652745882257557
Iter 25; theta = [1.00086232 0.99972906]; cross_e = 0.0005651446321133358
Iter 26; theta = [1.0008967 0.99971825]; cross_e = 0.0005650147371666394
Iter 27; theta = [1.00093108 0.99970744]; cross_e = 0.0005648849033422798
Iter 28; theta = [1.00096545 0.99969664]; cross_e = 0.0005647551305969393
Iter 29; theta = [1.00099981 0.99968584]; cross_e = 0.0005646254188872984
Iter 30; theta = [1.00103417 0.99967504]; cross_e = 0.000564495768170132
Iter 31; theta = [1.00106851 0.99966424]; cross_e = 0.000564366178402213
Iter 32; theta = [1.00110285 0.99965345]; cross_e = 0.0005642366495403741
Iter 33; theta = [1.00113718 0.99964266]; cross_e = 0.000564107181541474
Iter 34; theta = [1.0011715 0.99963187]; cross_e = 0.0005639777743624368
Iter 35; theta = [1.00120581 0.99962108]; cross_e = 0.0005638484279601941
Iter 36; theta = [1.00124012 0.9996103 ]; cross_e = 0.0005637191422917626
Iter 37; theta = [1.00127441 0.99959952]; cross_e = 0.0005635899173141606
Iter 38; theta = [1.0013087 0.99958873]; cross_e = 0.0005634607529844542
Iter 39; theta = [1.00134298 0.99957796]; cross_e = 0.0005633316492597699
Iter 40; theta = [1.00137725 0.99956718]; cross_e = 0.0005632026060972601
Iter 41; theta = [1.00141152 0.99955641]; cross_e = 0.0005630736234540992
Iter 42; theta = [1.00144577 0.99954564]; cross_e = 0.0005629447012875407
Iter 43; theta = [1.00148002 0.99953487]; cross_e = 0.0005628158395548608
Iter 44; theta = [1.00151426 0.9995241 ]; cross_e = 0.0005626870382133753
Iter 45; theta = [1.00154849 0.99951334]; cross_e = 0.000562558297220425
Iter 46; theta = [1.00158272 0.99950258]; cross_e = 0.0005624296165334195
Iter 47; theta = [1.00161693 0.99949182]; cross_e = 0.0005623009961097784
Iter 48; theta = [1.00165114 0.99948106]; cross_e = 0.0005621724359070073
Iter 49; theta = [1.00168534 0.99947031]; cross_e = 0.0005620439358825902
Iter 50; theta = [1.00171953 0.99945955]; cross_e = 0.0005619154959941096
Iter 51; theta = [1.00175371 0.9994488 ]; cross_e = 0.000561787116199147
Iter 52; theta = [1.00178789 0.99943805]; cross_e = 0.0005616587964553375
Iter 53; theta = [1.00182206 0.99942731]; cross_e = 0.0005615305367203725
Iter 54; theta = [1.00185621 0.99941657]; cross_e = 0.0005614023369519481
Iter 55; theta = [1.00189037 0.99940582]; cross_e = 0.0005612741971078299
Iter 56; theta = [1.00192451 0.99939509]; cross_e = 0.0005611461171458163
Iter 57; theta = [1.00195864 0.99938435]; cross_e = 0.0005610180970237453
Iter 58; theta = [1.00199277 0.99937361]; cross_e = 0.0005608901366994755
Iter 59; theta = [1.00202689 0.99936288]; cross_e = 0.0005607622361309381
Iter 60; theta = [1.002061 0.99935215]; cross_e = 0.0005606343952760788
Iter 61; theta = [1.0020951 0.99934142]; cross_e = 0.0005605066140929036
Iter 62; theta = [1.0021292 0.9993307]; cross_e = 0.0005603788925394142
Iter 63; theta = [1.00216328 0.99931998]; cross_e = 0.0005602512305737197
Iter 64; theta = [1.00219736 0.99930926]; cross_e = 0.0005601236281539195
Iter 65; theta = [1.00223143 0.99929854]; cross_e = 0.0005599960852381626
Iter 66; theta = [1.0022655 0.99928782]; cross_e = 0.0005598686017846459
Iter 67; theta = [1.00229955 0.99927711]; cross_e = 0.0005597411777515758
Iter 68; theta = [1.0023336 0.9992664]; cross_e = 0.0005596138130972555
Iter 69; theta = [1.00236764 0.99925569]; cross_e = 0.0005594865077799713
Iter 70; theta = [1.00240167 0.99924498]; cross_e = 0.0005593592617580774
Iter 71; theta = [1.00243569 0.99923427]; cross_e = 0.0005592320749899624
Iter 72; theta = [1.0024697 0.99922357]; cross_e = 0.0005591049474340458
Iter 73; theta = [1.00250371 0.99921287]; cross_e = 0.0005589778790487897
Iter 74; theta = [1.00253771 0.99920217]; cross_e = 0.0005588508697927078
Iter 75; theta = [1.0025717 0.99919148]; cross_e = 0.0005587239196243432
Iter 76; theta = [1.00260568 0.99918078]; cross_e = 0.0005585970285022584
Iter 77; theta = [1.00263966 0.99917009]; cross_e = 0.0005584701963850991
Iter 78; theta = [1.00267362 0.9991594 ]; cross_e = 0.0005583434232315114
Iter 79; theta = [1.00270758 0.99914872]; cross_e = 0.000558216709000186
Iter 80; theta = [1.00274153 0.99913803]; cross_e = 0.0005580900536498642
Iter 81; theta = [1.00277548 0.99912735]; cross_e = 0.0005579634571393318
Iter 82; theta = [1.00280941 0.99911667]; cross_e = 0.0005578369194273833
Iter 83; theta = [1.00284334 0.99910599]; cross_e = 0.0005577104404728859
Iter 84; theta = [1.00287726 0.99909532]; cross_e = 0.0005575840202347123
Iter 85; theta = [1.00291117 0.99908464]; cross_e = 0.0005574576586718069
Iter 86; theta = [1.00294507 0.99907397]; cross_e = 0.0005573313557431336
Iter 87; theta = [1.00297897 0.9990633 ]; cross_e = 0.000557205111407697
Iter 88; theta = [1.00301285 0.99905264]; cross_e = 0.0005570789256245359
Iter 89; theta = [1.00304673 0.99904197]; cross_e = 0.0005569527983527445
Iter 90; theta = [1.0030806 0.99903131]; cross_e = 0.0005568267295514359
Iter 91; theta = [1.00311447 0.99902065]; cross_e = 0.000556700719179764
Iter 92; theta = [1.00314832 0.99900999]; cross_e = 0.0005565747671969201
Iter 93; theta = [1.00318217 0.99899934]; cross_e = 0.0005564488735621529
Iter 94; theta = [1.00321601 0.99898869]; cross_e = 0.0005563230382347398
Iter 95; theta = [1.00324984 0.99897803]; cross_e = 0.000556197261173969
Iter 96; theta = [1.00328367 0.99896739]; cross_e = 0.0005560715423392064
Iter 97; theta = [1.00331748 0.99895674]; cross_e = 0.0005559458816898225
Iter 98; theta = [1.00335129 0.9989461 ]; cross_e = 0.0005558202791852617
Iter 99; theta = [1.00338509 0.99893545]; cross_e = 0.0005556947347849813
Iter 100; theta = [1.00341888 0.99892481]; cross_e = 0.0005555692484484599
Iter 101; theta = [1.00345267 0.99891418]; cross_e = 0.0005554438201352601
Iter 102; theta = [1.00348645 0.99890354]; cross_e = 0.0005553184498049399
Iter 103; theta = [1.00352021 0.99889291]; cross_e = 0.0005551931374171325
Iter 104; theta = [1.00355397 0.99888228]; cross_e = 0.0005550678829314682
Iter 105; theta = [1.00358773 0.99887165]; cross_e = 0.0005549426863076482
Iter 106; theta = [1.00362147 0.99886102]; cross_e = 0.0005548175475053881
Iter 107; theta = [1.00365521 0.9988504 ]; cross_e = 0.0005546924664844613
Iter 108; theta = [1.00368894 0.99883978]; cross_e = 0.0005545674432046506
Iter 109; theta = [1.00372266 0.99882916]; cross_e = 0.0005544424776258165
Iter 110; theta = [1.00375637 0.99881854]; cross_e = 0.0005543175697078168
Iter 111; theta = [1.00379008 0.99880792]; cross_e = 0.000554192719410566
Iter 112; theta = [1.00382378 0.99879731]; cross_e = 0.0005540679266940238
Iter 113; theta = [1.00385747 0.9987867 ]; cross_e = 0.0005539431915181715
Iter 114; theta = [1.00389115 0.99877609]; cross_e = 0.0005538185138430185
Iter 115; theta = [1.00392483 0.99876549]; cross_e = 0.0005536938936286561
Iter 116; theta = [1.00395849 0.99875488]; cross_e = 0.0005535693308351587
Iter 117; theta = [1.00399215 0.99874428]; cross_e = 0.0005534448254226657
Iter 118; theta = [1.0040258 0.99873368]; cross_e = 0.0005533203773513519
Iter 119; theta = [1.00405945 0.99872308]; cross_e = 0.000553195986581426
Iter 120; theta = [1.00409308 0.99871249]; cross_e = 0.0005530716530731354
Iter 121; theta = [1.00412671 0.9987019 ]; cross_e = 0.0005529473767867611
Iter 122; theta = [1.00416033 0.99869131]; cross_e = 0.0005528231576826263
Iter 123; theta = [1.00419394 0.99868072]; cross_e = 0.0005526989957210753
Iter 124; theta = [1.00422755 0.99867013]; cross_e = 0.0005525748908625145
Iter 125; theta = [1.00426114 0.99865955]; cross_e = 0.0005524508430673697
Iter 126; theta = [1.00429473 0.99864896]; cross_e = 0.0005523268522961054
Iter 127; theta = [1.00432831 0.99863838]; cross_e = 0.0005522029185092228
Iter 128; theta = [1.00436188 0.99862781]; cross_e = 0.0005520790416672722
Iter 129; theta = [1.00439545 0.99861723]; cross_e = 0.000551955221730819
Iter 130; theta = [1.00442901 0.99860666]; cross_e = 0.0005518314586604684
Iter 131; theta = [1.00446256 0.99859609]; cross_e = 0.0005517077524168951
Iter 132; theta = [1.0044961 0.99858552]; cross_e = 0.0005515841029607516
Iter 133; theta = [1.00452963 0.99857495]; cross_e = 0.0005514605102527955
Iter 134; theta = [1.00456316 0.99856439]; cross_e = 0.0005513369742537477
Iter 135; theta = [1.00459668 0.99855383]; cross_e = 0.0005512134949244283
Iter 136; theta = [1.00463019 0.99854327]; cross_e = 0.0005510900722256607
Iter 137; theta = [1.00466369 0.99853271]; cross_e = 0.0005509667061183161
Iter 138; theta = [1.00469719 0.99852215]; cross_e = 0.0005508433965632832
Iter 139; theta = [1.00473068 0.9985116 ]; cross_e = 0.0005507201435215124
Iter 140; theta = [1.00476416 0.99850105]; cross_e = 0.0005505969469539796
Iter 141; theta = [1.00479763 0.9984905 ]; cross_e = 0.0005504738068216886
Iter 142; theta = [1.00483109 0.99847995]; cross_e = 0.0005503507230856785
Iter 143; theta = [1.00486455 0.99846941]; cross_e = 0.0005502276957070574
Iter 144; theta = [1.004898 0.99845887]; cross_e = 0.0005501047246469286
Iter 145; theta = [1.00493144 0.99844833]; cross_e = 0.0005499818098664372
Iter 146; theta = [1.00496487 0.99843779]; cross_e = 0.0005498589513267905
Iter 147; theta = [1.0049983 0.99842725]; cross_e = 0.0005497361489892126
Iter 148; theta = [1.00503172 0.99841672]; cross_e = 0.0005496134028149664
Iter 149; theta = [1.00506513 0.99840619]; cross_e = 0.0005494907127653231
Iter 150; theta = [1.00509853 0.99839566]; cross_e = 0.0005493680788016456
Iter 151; theta = [1.00513193 0.99838513]; cross_e = 0.000549245500885301
Iter 152; theta = [1.00516531 0.99837461]; cross_e = 0.0005491229789776817
Iter 153; theta = [1.00519869 0.99836409]; cross_e = 0.0005490005130402309
Iter 154; theta = [1.00523206 0.99835357]; cross_e = 0.0005488781030344273
Iter 155; theta = [1.00526543 0.99834305]; cross_e = 0.0005487557489217763
Iter 156; theta = [1.00529879 0.99833253]; cross_e = 0.0005486334506638194
Iter 157; theta = [1.00533213 0.99832202]; cross_e = 0.0005485112082221601
Iter 158; theta = [1.00536548 0.99831151]; cross_e = 0.0005483890215583837
Iter 159; theta = [1.00539881 0.998301 ]; cross_e = 0.0005482668906341616
Iter 160; theta = [1.00543213 0.99829049]; cross_e = 0.0005481448154111977
Iter 161; theta = [1.00546545 0.99827998]; cross_e = 0.000548022795851175
Iter 162; theta = [1.00549876 0.99826948]; cross_e = 0.0005479008319158724
Iter 163; theta = [1.00553207 0.99825898]; cross_e = 0.0005477789235670888
Iter 164; theta = [1.00556536 0.99824848]; cross_e = 0.0005476570707666401
Iter 165; theta = [1.00559865 0.99823798]; cross_e = 0.000547535273476392
Iter 166; theta = [1.00563193 0.99822749]; cross_e = 0.0005474135316582461
Iter 167; theta = [1.0056652 0.998217 ]; cross_e = 0.0005472918452741316
Iter 168; theta = [1.00569847 0.99820651]; cross_e = 0.0005471702142860167
Iter 169; theta = [1.00573172 0.99819602]; cross_e = 0.0005470486386559062
Iter 170; theta = [1.00576497 0.99818554]; cross_e = 0.0005469271183458259
Iter 171; theta = [1.00579821 0.99817505]; cross_e = 0.0005468056533178699
Iter 172; theta = [1.00583145 0.99816457]; cross_e = 0.0005466842435341229
Iter 173; theta = [1.00586468 0.99815409]; cross_e = 0.0005465628889567439
Iter 174; theta = [1.00589789 0.99814361]; cross_e = 0.0005464415895478916
Iter 175; theta = [1.00593111 0.99813314]; cross_e = 0.0005463203452697901
Iter 176; theta = [1.00596431 0.99812267]; cross_e = 0.000546199156084683
Iter 177; theta = [1.00599751 0.9981122 ]; cross_e = 0.0005460780219548398
Iter 178; theta = [1.00603069 0.99810173]; cross_e = 0.0005459569428425902
Iter 179; theta = [1.00606387 0.99809126]; cross_e = 0.000545835918710277
Iter 180; theta = [1.00609705 0.9980808 ]; cross_e = 0.0005457149495202866
Iter 181; theta = [1.00613021 0.99807034]; cross_e = 0.0005455940352350145
Iter 182; theta = [1.00616337 0.99805988]; cross_e = 0.0005454731758169531
Iter 183; theta = [1.00619652 0.99804942]; cross_e = 0.0005453523712285521
Iter 184; theta = [1.00622966 0.99803896]; cross_e = 0.0005452316214323448
Iter 185; theta = [1.0062628 0.99802851]; cross_e = 0.0005451109263909043
Iter 186; theta = [1.00629593 0.99801806]; cross_e = 0.0005449902860667898
Iter 187; theta = [1.00632905 0.99800761]; cross_e = 0.0005448697004226438
Iter 188; theta = [1.00636216 0.99799716]; cross_e = 0.0005447491694211153
Iter 189; theta = [1.00639527 0.99798672]; cross_e = 0.0005446286930248988
Iter 190; theta = [1.00642836 0.99797628]; cross_e = 0.0005445082711967175
Iter 191; theta = [1.00646145 0.99796584]; cross_e = 0.0005443879038993418
Iter 192; theta = [1.00649454 0.9979554 ]; cross_e = 0.0005442675910955469
Iter 193; theta = [1.00652761 0.99794496]; cross_e = 0.0005441473327481727
Iter 194; theta = [1.00656068 0.99793453]; cross_e = 0.0005440271288200785
Iter 195; theta = [1.00659374 0.9979241 ]; cross_e = 0.0005439069792741525
Iter 196; theta = [1.00662679 0.99791367]; cross_e = 0.0005437868840733318
Iter 197; theta = [1.00665983 0.99790324]; cross_e = 0.0005436668431805846
Iter 198; theta = [1.00669287 0.99789282]; cross_e = 0.0005435468565588919
Iter 199; theta = [1.0067259 0.99788239]; cross_e = 0.0005434269241712857
Iter 200; theta = [1.00675892 0.99787197]; cross_e = 0.0005433070459808392
Iter 201; theta = [1.00679194 0.99786155]; cross_e = 0.0005431872219506529
Iter 202; theta = [1.00682494 0.99785114]; cross_e = 0.0005430674520438363
Iter 203; theta = [1.00685794 0.99784072]; cross_e = 0.0005429477362235822
Iter 204; theta = [1.00689094 0.99783031]; cross_e = 0.0005428280744530588
Iter 205; theta = [1.00692392 0.9978199 ]; cross_e = 0.0005427084666955235
Iter 206; theta = [1.0069569 0.99780949]; cross_e = 0.0005425889129142196
Iter 207; theta = [1.00698987 0.99779908]; cross_e = 0.0005424694130724678
Iter 208; theta = [1.00702283 0.99778868]; cross_e = 0.0005423499671335826
Iter 209; theta = [1.00705578 0.99777828]; cross_e = 0.0005422305750609315
Iter 210; theta = [1.00708873 0.99776788]; cross_e = 0.0005421112368179243
Iter 211; theta = [1.00712167 0.99775748]; cross_e = 0.0005419919523679716
Iter 212; theta = [1.0071546 0.99774709]; cross_e = 0.0005418727216745503
Iter 213; theta = [1.00718753 0.99773669]; cross_e = 0.0005417535447011741
Iter 214; theta = [1.00722044 0.9977263 ]; cross_e = 0.0005416344214113377
Iter 215; theta = [1.00725335 0.99771591]; cross_e = 0.0005415153517686329
Iter 216; theta = [1.00728625 0.99770553]; cross_e = 0.0005413963357366435
Iter 217; theta = [1.00731915 0.99769514]; cross_e = 0.0005412773732790065
Iter 218; theta = [1.00735204 0.99768476]; cross_e = 0.0005411584643593856
Iter 219; theta = [1.00738492 0.99767438]; cross_e = 0.0005410396089414737
Iter 220; theta = [1.00741779 0.997664 ]; cross_e = 0.0005409208069889932
Iter 221; theta = [1.00745065 0.99765362]; cross_e = 0.000540802058465711
Iter 222; theta = [1.00748351 0.99764325]; cross_e = 0.00054068336333543
Iter 223; theta = [1.00751636 0.99763288]; cross_e = 0.0005405647215619659
Iter 224; theta = [1.0075492 0.99762251]; cross_e = 0.0005404461331091807
Iter 225; theta = [1.00758204 0.99761214]; cross_e = 0.0005403275979409668
Iter 226; theta = [1.00761486 0.99760178]; cross_e = 0.0005402091160212578
Iter 227; theta = [1.00764768 0.99759141]; cross_e = 0.000540090687313997
Iter 228; theta = [1.0076805 0.99758105]; cross_e = 0.0005399723117831992
Iter 229; theta = [1.0077133 0.99757069]; cross_e = 0.0005398539893928492
Iter 230; theta = [1.0077461 0.99756033]; cross_e = 0.0005397357201070393
Iter 231; theta = [1.00777889 0.99754998]; cross_e = 0.0005396175038898435
Iter 232; theta = [1.00781167 0.99753963]; cross_e = 0.0005394993407053726
Iter 233; theta = [1.00784445 0.99752928]; cross_e = 0.0005393812305178014
Iter 234; theta = [1.00787722 0.99751893]; cross_e = 0.0005392631732912981
Iter 235; theta = [1.00790998 0.99750858]; cross_e = 0.0005391451689900811
Iter 236; theta = [1.00794273 0.99749824]; cross_e = 0.0005390272175784037
Iter 237; theta = [1.00797548 0.99748789]; cross_e = 0.0005389093190205501
Iter 238; theta = [1.00800821 0.99747755]; cross_e = 0.0005387914732808355
Iter 239; theta = [1.00804095 0.99746721]; cross_e = 0.0005386736803236074
Iter 240; theta = [1.00807367 0.99745688]; cross_e = 0.0005385559401132425
Iter 241; theta = [1.00810639 0.99744654]; cross_e = 0.000538438252614144
Iter 242; theta = [1.00813909 0.99743621]; cross_e = 0.0005383206177907708
Iter 243; theta = [1.0081718 0.99742588]; cross_e = 0.0005382030356075887
Iter 244; theta = [1.00820449 0.99741556]; cross_e = 0.0005380855060290971
Iter 245; theta = [1.00823718 0.99740523]; cross_e = 0.0005379680290198471
Iter 246; theta = [1.00826986 0.99739491]; cross_e = 0.0005378506045444075
Iter 247; theta = [1.00830253 0.99738459]; cross_e = 0.0005377332325673806
Iter 248; theta = [1.00833519 0.99737427]; cross_e = 0.0005376159130534059
Iter 249; theta = [1.00836785 0.99736395]; cross_e = 0.0005374986459671402
Iter 250; theta = [1.0084005 0.99735363]; cross_e = 0.0005373814312732795
Iter 251; theta = [1.00843314 0.99734332]; cross_e = 0.0005372642689365697
Iter 252; theta = [1.00846578 0.99733301]; cross_e = 0.0005371471589217643
Iter 253; theta = [1.00849841 0.9973227 ]; cross_e = 0.0005370301011936462
Iter 254; theta = [1.00853103 0.99731239]; cross_e = 0.0005369130957170594
Iter 255; theta = [1.00856364 0.99730209]; cross_e = 0.0005367961424568501
Iter 256; theta = [1.00859624 0.99729179]; cross_e = 0.0005366792413779095
Iter 257; theta = [1.00862884 0.99728149]; cross_e = 0.0005365623924451522
Iter 258; theta = [1.00866143 0.99727119]; cross_e = 0.0005364455956235459
Iter 259; theta = [1.00869402 0.99726089]; cross_e = 0.000536328850878055
Iter 260; theta = [1.00872659 0.9972506 ]; cross_e = 0.0005362121581736979
Iter 261; theta = [1.00875916 0.99724031]; cross_e = 0.0005360955174755289
Iter 262; theta = [1.00879173 0.99723002]; cross_e = 0.0005359789287486197
Iter 263; theta = [1.00882428 0.99721973]; cross_e = 0.0005358623919580787
Iter 264; theta = [1.00885683 0.99720944]; cross_e = 0.0005357459070690432
Iter 265; theta = [1.00888937 0.99719916]; cross_e = 0.000535629474046689
Iter 266; theta = [1.0089219 0.99718888]; cross_e = 0.0005355130928562182
Iter 267; theta = [1.00895443 0.9971786 ]; cross_e = 0.0005353967634628597
Iter 268; theta = [1.00898694 0.99716832]; cross_e = 0.0005352804858318808
Iter 269; theta = [1.00901945 0.99715805]; cross_e = 0.0005351642599285846
Iter 270; theta = [1.00905196 0.99714777]; cross_e = 0.0005350480857182928
Iter 271; theta = [1.00908445 0.9971375 ]; cross_e = 0.0005349319631663518
Iter 272; theta = [1.00911694 0.99712723]; cross_e = 0.0005348158922381592
Iter 273; theta = [1.00914942 0.99711696]; cross_e = 0.00053469987289915
Iter 274; theta = [1.0091819 0.9971067]; cross_e = 0.0005345839051147506
Iter 275; theta = [1.00921437 0.99709644]; cross_e = 0.0005344679888504635
Iter 276; theta = [1.00924683 0.99708618]; cross_e = 0.0005343521240717733
Iter 277; theta = [1.00927928 0.99707592]; cross_e = 0.0005342363107442565
Iter 278; theta = [1.00931172 0.99706566]; cross_e = 0.000534120548833474
Iter 279; theta = [1.00934416 0.99705541]; cross_e = 0.000534004838305029
Iter 280; theta = [1.00937659 0.99704515]; cross_e = 0.000533889179124549
Iter 281; theta = [1.00940901 0.9970349 ]; cross_e = 0.0005337735712577154
Iter 282; theta = [1.00944143 0.99702465]; cross_e = 0.0005336580146702265
Iter 283; theta = [1.00947384 0.99701441]; cross_e = 0.0005335425093277951
Iter 284; theta = [1.00950624 0.99700416]; cross_e = 0.0005334270551961914
Iter 285; theta = [1.00953864 0.99699392]; cross_e = 0.000533311652241199
Iter 286; theta = [1.00957102 0.99698368]; cross_e = 0.0005331963004286424
Iter 287; theta = [1.0096034 0.99697344]; cross_e = 0.0005330809997243645
Iter 288; theta = [1.00963578 0.99696321]; cross_e = 0.0005329657500942538
Iter 289; theta = [1.00966814 0.99695297]; cross_e = 0.0005328505515042189
Iter 290; theta = [1.0097005 0.99694274]; cross_e = 0.0005327354039202049
Iter 291; theta = [1.00973285 0.99693251]; cross_e = 0.0005326203073081664
Iter 292; theta = [1.00976519 0.99692228]; cross_e = 0.0005325052616341193
Iter 293; theta = [1.00979753 0.99691206]; cross_e = 0.0005323902668641008
Iter 294; theta = [1.00982986 0.99690183]; cross_e = 0.0005322753229641788
Iter 295; theta = [1.00986218 0.99689161]; cross_e = 0.0005321604299004225
Iter 296; theta = [1.0098945 0.99688139]; cross_e = 0.0005320455876389564
Iter 297; theta = [1.0099268 0.99687118]; cross_e = 0.0005319307961459665
Iter 298; theta = [1.00995911 0.99686096]; cross_e = 0.0005318160553876042
Iter 299; theta = [1.0099914 0.99685075]; cross_e = 0.0005317013653300976
Iter 300; theta = [1.01002368 0.99684054]; cross_e = 0.0005315867259396839
Iter 301; theta = [1.01005596 0.99683033]; cross_e = 0.0005314721371826418
Iter 302; theta = [1.01008824 0.99682012]; cross_e = 0.0005313575990252666
Iter 303; theta = [1.0101205 0.99680991]; cross_e = 0.0005312431114339011
Iter 304; theta = [1.01015276 0.99679971]; cross_e = 0.0005311286743749015
Iter 305; theta = [1.01018501 0.99678951]; cross_e = 0.0005310142878146627
Iter 306; theta = [1.01021725 0.99677931]; cross_e = 0.0005308999517196216
Iter 307; theta = [1.01024949 0.99676911]; cross_e = 0.000530785666056213
Iter 308; theta = [1.01028171 0.99675892]; cross_e = 0.0005306714307909233
Iter 309; theta = [1.01031394 0.99674873]; cross_e = 0.0005305572458902746
Iter 310; theta = [1.01034615 0.99673854]; cross_e = 0.0005304431113207939
Iter 311; theta = [1.01037836 0.99672835]; cross_e = 0.0005303290270490739
Iter 312; theta = [1.01041056 0.99671816]; cross_e = 0.000530214993041704
Iter 313; theta = [1.01044275 0.99670798]; cross_e = 0.0005301010092653062
Iter 314; theta = [1.01047494 0.99669779]; cross_e = 0.0005299870756865605
Iter 315; theta = [1.01050711 0.99668761]; cross_e = 0.0005298731922721502
Iter 316; theta = [1.01053929 0.99667743]; cross_e = 0.0005297593589887877
Iter 317; theta = [1.01057145 0.99666726]; cross_e = 0.0005296455758032312
Iter 318; theta = [1.01060361 0.99665708]; cross_e = 0.0005295318426822541
Iter 319; theta = [1.01063576 0.99664691]; cross_e = 0.0005294181595926734
Iter 320; theta = [1.0106679 0.99663674]; cross_e = 0.0005293045265013152
Iter 321; theta = [1.01070004 0.99662657]; cross_e = 0.0005291909433750635
Iter 322; theta = [1.01073217 0.9966164 ]; cross_e = 0.0005290774101807959
Iter 323; theta = [1.01076429 0.99660624]; cross_e = 0.0005289639268854552
Iter 324; theta = [1.0107964 0.99659608]; cross_e = 0.0005288504934559783
Iter 325; theta = [1.01082851 0.99658592]; cross_e = 0.0005287371098593661
Iter 326; theta = [1.01086061 0.99657576]; cross_e = 0.0005286237760626224
Iter 327; theta = [1.0108927 0.9965656]; cross_e = 0.0005285104920327918
Iter 328; theta = [1.01092479 0.99655545]; cross_e = 0.0005283972577369557
Iter 329; theta = [1.01095687 0.9965453 ]; cross_e = 0.0005282840731422008
Iter 330; theta = [1.01098894 0.99653515]; cross_e = 0.0005281709382156699
Iter 331; theta = [1.011021 0.996525]; cross_e = 0.0005280578529245082
Iter 332; theta = [1.01105306 0.99651485]; cross_e = 0.0005279448172359161
Iter 333; theta = [1.01108511 0.99650471]; cross_e = 0.0005278318311171089
Iter 334; theta = [1.01111715 0.99649457]; cross_e = 0.0005277188945353287
Iter 335; theta = [1.01114919 0.99648443]; cross_e = 0.0005276060074578557
Iter 336; theta = [1.01118122 0.99647429]; cross_e = 0.0005274931698519775
Iter 337; theta = [1.01121324 0.99646415]; cross_e = 0.0005273803816850524
Iter 338; theta = [1.01124526 0.99645402]; cross_e = 0.0005272676429244199
Iter 339; theta = [1.01127726 0.99644389]; cross_e = 0.0005271549535374862
Iter 340; theta = [1.01130927 0.99643376]; cross_e = 0.000527042313491662
Iter 341; theta = [1.01134126 0.99642363]; cross_e = 0.0005269297227543895
Iter 342; theta = [1.01137325 0.9964135 ]; cross_e = 0.0005268171812931654
Iter 343; theta = [1.01140523 0.99640338]; cross_e = 0.0005267046890754762
Iter 344; theta = [1.0114372 0.99639326]; cross_e = 0.000526592246068859
Iter 345; theta = [1.01146916 0.99638314]; cross_e = 0.0005264798522408771
Iter 346; theta = [1.01150112 0.99637302]; cross_e = 0.0005263675075591385
Iter 347; theta = [1.01153307 0.9963629 ]; cross_e = 0.0005262552119912327
Iter 348; theta = [1.01156502 0.99635279]; cross_e = 0.0005261429655048268
Iter 349; theta = [1.01159696 0.99634268]; cross_e = 0.0005260307680675996
Iter 350; theta = [1.01162889 0.99633257]; cross_e = 0.0005259186196472488
Iter 351; theta = [1.01166081 0.99632246]; cross_e = 0.0005258065202115013
Iter 352; theta = [1.01169273 0.99631236]; cross_e = 0.0005256944697281334
Iter 353; theta = [1.01172464 0.99630225]; cross_e = 0.0005255824681649277
Iter 354; theta = [1.01175654 0.99629215]; cross_e = 0.0005254705154896976
Iter 355; theta = [1.01178843 0.99628205]; cross_e = 0.0005253586116703031
Iter 356; theta = [1.01182032 0.99627195]; cross_e = 0.0005252467566746041
Iter 357; theta = [1.0118522 0.99626186]; cross_e = 0.0005251349504705145
Iter 358; theta = [1.01188408 0.99625176]; cross_e = 0.0005250231930259667
Iter 359; theta = [1.01191594 0.99624167]; cross_e = 0.0005249114843089139
Iter 360; theta = [1.0119478 0.99623158]; cross_e = 0.0005247998242873487
Iter 361; theta = [1.01197966 0.99622149]; cross_e = 0.0005246882129292754
Iter 362; theta = [1.0120115 0.99621141]; cross_e = 0.0005245766502027617
Iter 363; theta = [1.01204334 0.99620132]; cross_e = 0.0005244651360758564
Iter 364; theta = [1.01207517 0.99619124]; cross_e = 0.000524353670516663
Iter 365; theta = [1.012107 0.99618116]; cross_e = 0.0005242422534933161
Iter 366; theta = [1.01213882 0.99617109]; cross_e = 0.0005241308849739811
Iter 367; theta = [1.01217063 0.99616101]; cross_e = 0.0005240195649268134
Iter 368; theta = [1.01220243 0.99615094]; cross_e = 0.0005239082933200499
Iter 369; theta = [1.01223423 0.99614086]; cross_e = 0.000523797070121919
Iter 370; theta = [1.01226602 0.9961308 ]; cross_e = 0.0005236858953007007
Iter 371; theta = [1.0122978 0.99612073]; cross_e = 0.0005235747688246646
Iter 372; theta = [1.01232958 0.99611066]; cross_e = 0.0005234636906621609
Iter 373; theta = [1.01236135 0.9961006 ]; cross_e = 0.0005233526607815269
Iter 374; theta = [1.01239311 0.99609054]; cross_e = 0.0005232416791511347
Iter 375; theta = [1.01242487 0.99608048]; cross_e = 0.0005231307457394023
Iter 376; theta = [1.01245662 0.99607042]; cross_e = 0.0005230198605147687
Iter 377; theta = [1.01248836 0.99606036]; cross_e = 0.0005229090234456738
Iter 378; theta = [1.01252009 0.99605031]; cross_e = 0.0005227982345006163
Iter 379; theta = [1.01255182 0.99604026]; cross_e = 0.0005226874936481251
Iter 380; theta = [1.01258354 0.99603021]; cross_e = 0.0005225768008567264
Iter 381; theta = [1.01261525 0.99602016]; cross_e = 0.0005224661560950006
Iter 382; theta = [1.01264696 0.99601011]; cross_e = 0.0005223555593315424
Iter 383; theta = [1.01267866 0.99600007]; cross_e = 0.0005222450105349868
Iter 384; theta = [1.01271035 0.99599003]; cross_e = 0.0005221345096739686
Iter 385; theta = [1.01274204 0.99597999]; cross_e = 0.0005220240567171927
Iter 386; theta = [1.01277372 0.99596995]; cross_e = 0.0005219136516333592
Iter 387; theta = [1.01280539 0.99595992]; cross_e = 0.0005218032943911919
Iter 388; theta = [1.01283706 0.99594988]; cross_e = 0.0005216929849594605
Iter 389; theta = [1.01286871 0.99593985]; cross_e = 0.000521582723306971
Iter 390; theta = [1.01290037 0.99592982]; cross_e = 0.0005214725094025255
Iter 391; theta = [1.01293201 0.99591979]; cross_e = 0.0005213623432149565
Iter 392; theta = [1.01296365 0.99590977]; cross_e = 0.0005212522247131595
Iter 393; theta = [1.01299528 0.99589974]; cross_e = 0.0005211421538660276
Iter 394; theta = [1.0130269 0.99588972]; cross_e = 0.0005210321306424697
Iter 395; theta = [1.01305852 0.9958797 ]; cross_e = 0.0005209221550114664
Iter 396; theta = [1.01309013 0.99586968]; cross_e = 0.0005208122269419755
Iter 397; theta = [1.01312173 0.99585966]; cross_e = 0.0005207023464030136
Iter 398; theta = [1.01315333 0.99584965]; cross_e = 0.0005205925133636153
Iter 399; theta = [1.01318492 0.99583964]; cross_e = 0.000520482727792838
Iter 400; theta = [1.0132165 0.99582963]; cross_e = 0.000520372989659776
Iter 401; theta = [1.01324808 0.99581962]; cross_e = 0.0005202632989335397
Iter 402; theta = [1.01327964 0.99580961]; cross_e = 0.0005201536555832606
Iter 403; theta = [1.01331121 0.99579961]; cross_e = 0.0005200440595781285
Iter 404; theta = [1.01334276 0.99578961]; cross_e = 0.0005199345108873337
Iter 405; theta = [1.01337431 0.99577961]; cross_e = 0.0005198250094800877
Iter 406; theta = [1.01340585 0.99576961]; cross_e = 0.0005197155553256429
Iter 407; theta = [1.01343738 0.99575961]; cross_e = 0.0005196061483932806
Iter 408; theta = [1.01346891 0.99574962]; cross_e = 0.0005194967886522996
Iter 409; theta = [1.01350043 0.99573963]; cross_e = 0.0005193874760720212
Iter 410; theta = [1.01353195 0.99572963]; cross_e = 0.0005192782106218187
Iter 411; theta = [1.01356345 0.99571965]; cross_e = 0.0005191689922710668
Iter 412; theta = [1.01359495 0.99570966]; cross_e = 0.00051905982098917
Iter 413; theta = [1.01362645 0.99569967]; cross_e = 0.000518950696745559
Iter 414; theta = [1.01365793 0.99568969]; cross_e = 0.0005188416195097104
Iter 415; theta = [1.01368941 0.99567971]; cross_e = 0.0005187325892510964
Iter 416; theta = [1.01372089 0.99566973]; cross_e = 0.0005186236059392546
Iter 417; theta = [1.01375235 0.99565976]; cross_e = 0.0005185146695437011
Iter 418; theta = [1.01378381 0.99564978]; cross_e = 0.0005184057800340286
Iter 419; theta = [1.01381526 0.99563981]; cross_e = 0.0005182969373798033
Iter 420; theta = [1.01384671 0.99562984]; cross_e = 0.0005181881415506664
Iter 421; theta = [1.01387815 0.99561987]; cross_e = 0.0005180793925162559
Iter 422; theta = [1.01390958 0.9956099 ]; cross_e = 0.0005179706902462542
Iter 423; theta = [1.013941 0.99559994]; cross_e = 0.0005178620347103542
Iter 424; theta = [1.01397242 0.99558997]; cross_e = 0.0005177534258782696
Iter 425; theta = [1.01400383 0.99558001]; cross_e = 0.000517644863719779
Iter 426; theta = [1.01403524 0.99557005]; cross_e = 0.0005175363482046332
Iter 427; theta = [1.01406663 0.99556009]; cross_e = 0.0005174278793026467
Iter 428; theta = [1.01409803 0.99555014]; cross_e = 0.0005173194569836594
Iter 429; theta = [1.01412941 0.99554019]; cross_e = 0.0005172110812175175
Iter 430; theta = [1.01416079 0.99553023]; cross_e = 0.000517102751974111
Iter 431; theta = [1.01419216 0.99552028]; cross_e = 0.0005169944692233358
Iter 432; theta = [1.01422352 0.99551034]; cross_e = 0.0005168862329351336
Iter 433; theta = [1.01425488 0.99550039]; cross_e = 0.0005167780430794739
Iter 434; theta = [1.01428623 0.99549045]; cross_e = 0.0005166698996263206
Iter 435; theta = [1.01431757 0.99548051]; cross_e = 0.0005165618025457044
Iter 436; theta = [1.01434891 0.99547057]; cross_e = 0.0005164537518076505
Iter 437; theta = [1.01438024 0.99546063]; cross_e = 0.0005163457473822447
Iter 438; theta = [1.01441156 0.99545069]; cross_e = 0.0005162377892395573
Iter 439; theta = [1.01444288 0.99544076]; cross_e = 0.0005161298773497057
Iter 440; theta = [1.01447419 0.99543083]; cross_e = 0.0005160220116828429
Iter 441; theta = [1.01450549 0.9954209 ]; cross_e = 0.0005159141922091229
Iter 442; theta = [1.01453678 0.99541097]; cross_e = 0.0005158064188987463
Iter 443; theta = [1.01456807 0.99540104]; cross_e = 0.0005156986917219257
Iter 444; theta = [1.01459936 0.99539112]; cross_e = 0.0005155910106489095
Iter 445; theta = [1.01463063 0.9953812 ]; cross_e = 0.0005154833756499721
Iter 446; theta = [1.0146619 0.99537128]; cross_e = 0.0005153757866953996
Iter 447; theta = [1.01469316 0.99536136]; cross_e = 0.0005152682437555246
Iter 448; theta = [1.01472442 0.99535144]; cross_e = 0.0005151607468006846
Iter 449; theta = [1.01475567 0.99534153]; cross_e = 0.0005150532958012535
Iter 450; theta = [1.01478691 0.99533161]; cross_e = 0.0005149458907276322
Iter 451; theta = [1.01481814 0.9953217 ]; cross_e = 0.0005148385315502388
Iter 452; theta = [1.01484937 0.99531179]; cross_e = 0.0005147312182395346
Iter 453; theta = [1.0148806 0.99530189]; cross_e = 0.000514623950765971
Iter 454; theta = [1.01491181 0.99529198]; cross_e = 0.0005145167291000615
Iter 455; theta = [1.01494302 0.99528208]; cross_e = 0.0005144095532123419
Iter 456; theta = [1.01497422 0.99527218]; cross_e = 0.0005143024230733424
Iter 457; theta = [1.01500542 0.99526228]; cross_e = 0.0005141953386536516
Iter 458; theta = [1.0150366 0.99525238]; cross_e = 0.0005140882999238573
Iter 459; theta = [1.01506778 0.99524249]; cross_e = 0.0005139813068546057
Iter 460; theta = [1.01509896 0.99523259]; cross_e = 0.0005138743594165308
Iter 461; theta = [1.01513013 0.9952227 ]; cross_e = 0.0005137674575803128
Iter 462; theta = [1.01516129 0.99521281]; cross_e = 0.0005136606013166608
Iter 463; theta = [1.01519244 0.99520292]; cross_e = 0.0005135537905962889
Iter 464; theta = [1.01522359 0.99519304]; cross_e = 0.0005134470253899611
Iter 465; theta = [1.01525473 0.99518315]; cross_e = 0.0005133403056684538
Iter 466; theta = [1.01528587 0.99517327]; cross_e = 0.000513233631402556
Iter 467; theta = [1.015317 0.99516339]; cross_e = 0.000513127002563114
Iter 468; theta = [1.01534812 0.99515351]; cross_e = 0.0005130204191209686
Iter 469; theta = [1.01537923 0.99514364]; cross_e = 0.0005129138810469865
Iter 470; theta = [1.01541034 0.99513376]; cross_e = 0.0005128073883120893
Iter 471; theta = [1.01544144 0.99512389]; cross_e = 0.0005127009408872048
Iter 472; theta = [1.01547254 0.99511402]; cross_e = 0.0005125945387432782
Iter 473; theta = [1.01550362 0.99510415]; cross_e = 0.0005124881818512734
Iter 474; theta = [1.0155347 0.99509429]; cross_e = 0.0005123818701822015
Iter 475; theta = [1.01556578 0.99508442]; cross_e = 0.0005122756037071038
Iter 476; theta = [1.01559685 0.99507456]; cross_e = 0.0005121693823970126
Iter 477; theta = [1.01562791 0.9950647 ]; cross_e = 0.0005120632062230116
Iter 478; theta = [1.01565896 0.99505484]; cross_e = 0.000511957075156202
Iter 479; theta = [1.01569001 0.99504498]; cross_e = 0.0005118509891677084
Iter 480; theta = [1.01572105 0.99503513]; cross_e = 0.0005117449482286808
Iter 481; theta = [1.01575209 0.99502527]; cross_e = 0.0005116389523102995
Iter 482; theta = [1.01578311 0.99501542]; cross_e = 0.0005115330013837556
Iter 483; theta = [1.01581414 0.99500557]; cross_e = 0.0005114270954202691
Iter 484; theta = [1.01584515 0.99499573]; cross_e = 0.000511321234391103
Iter 485; theta = [1.01587616 0.99498588]; cross_e = 0.0005112154182675274
Iter 486; theta = [1.01590716 0.99497604]; cross_e = 0.0005111096470208318
Iter 487; theta = [1.01593815 0.99496619]; cross_e = 0.0005110039206223524
Iter 488; theta = [1.01596914 0.99495635]; cross_e = 0.0005108982390434238
Iter 489; theta = [1.01600012 0.99494652]; cross_e = 0.0005107926022554251
Iter 490; theta = [1.0160311 0.99493668]; cross_e = 0.0005106870102297373
Iter 491; theta = [1.01606207 0.99492685]; cross_e = 0.0005105814629378008
Iter 492; theta = [1.01609303 0.99491701]; cross_e = 0.0005104759603510411
Iter 493; theta = [1.01612398 0.99490718]; cross_e = 0.000510370502440956
Iter 494; theta = [1.01615493 0.99489736]; cross_e = 0.0005102650891790098
Iter 495; theta = [1.01618587 0.99488753]; cross_e = 0.0005101597205367311
Iter 496; theta = [1.01621681 0.9948777 ]; cross_e = 0.0005100543964856628
Iter 497; theta = [1.01624774 0.99486788]; cross_e = 0.000509949116997374
Iter 498; theta = [1.01627866 0.99485806]; cross_e = 0.0005098438820434339
Iter 499; theta = [1.01630958 0.99484824]; cross_e = 0.0005097386915954933
Iter 500; theta = [1.01634048 0.99483842]; cross_e = 0.0005096335456251608
Iter 501; theta = [1.01637139 0.99482861]; cross_e = 0.0005095284441041196
Iter 502; theta = [1.01640228 0.9948188 ]; cross_e = 0.000509423387004033
Iter 503; theta = [1.01643317 0.99480898]; cross_e = 0.0005093183742966303
Iter 504; theta = [1.01646405 0.99479917]; cross_e = 0.0005092134059536569
Iter 505; theta = [1.01649493 0.99478937]; cross_e = 0.0005091084819468481
Iter 506; theta = [1.0165258 0.99477956]; cross_e = 0.0005090036022479916
Iter 507; theta = [1.01655666 0.99476976]; cross_e = 0.000508898766828909
Iter 508; theta = [1.01658752 0.99475996]; cross_e = 0.0005087939756614243
Iter 509; theta = [1.01661837 0.99475016]; cross_e = 0.0005086892287173848
Iter 510; theta = [1.01664921 0.99474036]; cross_e = 0.0005085845259686677
Iter 511; theta = [1.01668005 0.99473056]; cross_e = 0.0005084798673871994
Iter 512; theta = [1.01671088 0.99472077]; cross_e = 0.0005083752529448848
Iter 513; theta = [1.0167417 0.99471097]; cross_e = 0.0005082706826136849
Iter 514; theta = [1.01677252 0.99470118]; cross_e = 0.0005081661563655599
Iter 515; theta = [1.01680333 0.99469139]; cross_e = 0.000508061674172532
Iter 516; theta = [1.01683413 0.99468161]; cross_e = 0.0005079572360066071
Iter 517; theta = [1.01686493 0.99467182]; cross_e = 0.0005078528418398335
Iter 518; theta = [1.01689572 0.99466204]; cross_e = 0.0005077484916442761
Iter 519; theta = [1.0169265 0.99465226]; cross_e = 0.0005076441853920352
Iter 520; theta = [1.01695728 0.99464248]; cross_e = 0.0005075399230552251
Iter 521; theta = [1.01698805 0.9946327 ]; cross_e = 0.0005074357046059937
Iter 522; theta = [1.01701882 0.99462293]; cross_e = 0.0005073315300164891
Iter 523; theta = [1.01704958 0.99461315]; cross_e = 0.0005072273992589147
Iter 524; theta = [1.01708033 0.99460338]; cross_e = 0.0005071233123054672
Iter 525; theta = [1.01711107 0.99459361]; cross_e = 0.0005070192691283979
Iter 526; theta = [1.01714181 0.99458384]; cross_e = 0.0005069152696999571
Iter 527; theta = [1.01717254 0.99457408]; cross_e = 0.0005068113139924192
Iter 528; theta = [1.01720327 0.99456431]; cross_e = 0.0005067074019781028
Iter 529; theta = [1.01723399 0.99455455]; cross_e = 0.000506603533629324
Iter 530; theta = [1.0172647 0.99454479]; cross_e = 0.0005064997089184533
Iter 531; theta = [1.0172954 0.99453503]; cross_e = 0.0005063959278178417
Iter 532; theta = [1.0173261 0.99452527]; cross_e = 0.0005062921902999072
Iter 533; theta = [1.0173568 0.99451552]; cross_e = 0.0005061884963370719
Iter 534; theta = [1.01738748 0.99450576]; cross_e = 0.0005060848459017687
Iter 535; theta = [1.01741816 0.99449601]; cross_e = 0.0005059812389664668
Iter 536; theta = [1.01744884 0.99448626]; cross_e = 0.0005058776755036712
Iter 537; theta = [1.0174795 0.99447652]; cross_e = 0.0005057741554858867
Iter 538; theta = [1.01751016 0.99446677]; cross_e = 0.0005056706788856553
Iter 539; theta = [1.01754082 0.99445703]; cross_e = 0.0005055672456755506
Iter 540; theta = [1.01757147 0.99444728]; cross_e = 0.000505463855828142
Iter 541; theta = [1.01760211 0.99443754]; cross_e = 0.0005053605093160302
Iter 542; theta = [1.01763274 0.99442781]; cross_e = 0.0005052572061118655
Iter 543; theta = [1.01766337 0.99441807]; cross_e = 0.0005051539461882994
Iter 544; theta = [1.01769399 0.99440834]; cross_e = 0.0005050507295179977
Iter 545; theta = [1.01772461 0.9943986 ]; cross_e = 0.0005049475560736715
Iter 546; theta = [1.01775521 0.99438887]; cross_e = 0.0005048444258280358
Iter 547; theta = [1.01778582 0.99437914]; cross_e = 0.0005047413387538379
Iter 548; theta = [1.01781641 0.99436942]; cross_e = 0.0005046382948238698
Iter 549; theta = [1.017847 0.99435969]; cross_e = 0.0005045352940108888
Iter 550; theta = [1.01787758 0.99434997]; cross_e = 0.0005044323362877397
Iter 551; theta = [1.01790816 0.99434025]; cross_e = 0.0005043294216272295
Iter 552; theta = [1.01793873 0.99433053]; cross_e = 0.0005042265500022461
Iter 553; theta = [1.01796929 0.99432081]; cross_e = 0.0005041237213856692
Iter 554; theta = [1.01799985 0.99431109]; cross_e = 0.0005040209357503951
Iter 555; theta = [1.0180304 0.99430138]; cross_e = 0.0005039181930693606
Iter 556; theta = [1.01806094 0.99429167]; cross_e = 0.0005038154933155227
Iter 557; theta = [1.01809148 0.99428196]; cross_e = 0.0005037128364618421
Iter 558; theta = [1.01812201 0.99427225]; cross_e = 0.0005036102224813284
Iter 559; theta = [1.01815254 0.99426254]; cross_e = 0.0005035076513470026
Iter 560; theta = [1.01818306 0.99425284]; cross_e = 0.0005034051230319003
Iter 561; theta = [1.01821357 0.99424313]; cross_e = 0.0005033026375090875
Iter 562; theta = [1.01824407 0.99423343]; cross_e = 0.0005032001947516629
Iter 563; theta = [1.01827457 0.99422373]; cross_e = 0.0005030977947327306
Iter 564; theta = [1.01830507 0.99421403]; cross_e = 0.0005029954374254223
Iter 565; theta = [1.01833555 0.99420434]; cross_e = 0.0005028931228028906
Iter 566; theta = [1.01836603 0.99419464]; cross_e = 0.0005027908508383335
Iter 567; theta = [1.01839651 0.99418495]; cross_e = 0.0005026886215049366
Iter 568; theta = [1.01842697 0.99417526]; cross_e = 0.0005025864347759236
Iter 569; theta = [1.01845743 0.99416557]; cross_e = 0.0005024842906245406
Iter 570; theta = [1.01848789 0.99415589]; cross_e = 0.0005023821890240608
Iter 571; theta = [1.01851834 0.9941462 ]; cross_e = 0.0005022801299477854
Iter 572; theta = [1.01854878 0.99413652]; cross_e = 0.0005021781133690037
Iter 573; theta = [1.01857921 0.99412684]; cross_e = 0.0005020761392610733
Iter 574; theta = [1.01860964 0.99411716]; cross_e = 0.000501974207597339
Iter 575; theta = [1.01864006 0.99410748]; cross_e = 0.0005018723183511875
Iter 576; theta = [1.01867048 0.99409781]; cross_e = 0.0005017704714960266
Iter 577; theta = [1.01870089 0.99408813]; cross_e = 0.0005016686670052729
Iter 578; theta = [1.01873129 0.99407846]; cross_e = 0.0005015669048523741
Iter 579; theta = [1.01876169 0.99406879]; cross_e = 0.000501465185010809
Iter 580; theta = [1.01879208 0.99405913]; cross_e = 0.0005013635074540506
Iter 581; theta = [1.01882246 0.99404946]; cross_e = 0.0005012618721556359
Iter 582; theta = [1.01885284 0.99403979]; cross_e = 0.0005011602790890921
Iter 583; theta = [1.01888321 0.99403013]; cross_e = 0.0005010587282279704
Iter 584; theta = [1.01891358 0.99402047]; cross_e = 0.0005009572195458583
Iter 585; theta = [1.01894394 0.99401081]; cross_e = 0.000500855753016367
Iter 586; theta = [1.01897429 0.99400116]; cross_e = 0.0005007543286130932
Iter 587; theta = [1.01900463 0.9939915 ]; cross_e = 0.0005006529463097175
Iter 588; theta = [1.01903497 0.99398185]; cross_e = 0.0005005516060798954
Iter 589; theta = [1.01906531 0.9939722 ]; cross_e = 0.0005004503078973047
Iter 590; theta = [1.01909563 0.99396255]; cross_e = 0.0005003490517356808
Iter 591; theta = [1.01912595 0.9939529 ]; cross_e = 0.0005002478375687474
Iter 592; theta = [1.01915627 0.99394325]; cross_e = 0.0005001466653702557
Iter 593; theta = [1.01918658 0.99393361]; cross_e = 0.0005000455351139827
Iter 594; theta = [1.01921688 0.99392396]; cross_e = 0.000499944446773746
Iter 595; theta = [1.01924717 0.99391432]; cross_e = 0.0004998434003233516
Iter 596; theta = [1.01927746 0.99390469]; cross_e = 0.0004997423957366565
Iter 597; theta = [1.01930774 0.99389505]; cross_e = 0.000499641432987518
Iter 598; theta = [1.01933802 0.99388541]; cross_e = 0.0004995405120498325
Iter 599; theta = [1.01936829 0.99387578]; cross_e = 0.0004994396328974966
Iter 600; theta = [1.01939855 0.99386615]; cross_e = 0.0004993387955044402
Iter 601; theta = [1.01942881 0.99385652]; cross_e = 0.0004992379998446328
Iter 602; theta = [1.01945906 0.99384689]; cross_e = 0.000499137245892045
Iter 603; theta = [1.01948931 0.99383727]; cross_e = 0.0004990365336206711
Iter 604; theta = [1.01951954 0.99382764]; cross_e = 0.0004989358630045172
Iter 605; theta = [1.01954978 0.99381802]; cross_e = 0.0004988352340176338
Iter 606; theta = [1.01958 0.9938084]; cross_e = 0.0004987346466340922
Iter 607; theta = [1.01961022 0.99379878]; cross_e = 0.0004986341008279575
Iter 608; theta = [1.01964043 0.99378916]; cross_e = 0.0004985335965733465
Iter 609; theta = [1.01967064 0.99377955]; cross_e = 0.0004984331338443739
Iter 610; theta = [1.01970084 0.99376993]; cross_e = 0.0004983327126152094
Iter 611; theta = [1.01973104 0.99376032]; cross_e = 0.0004982323328599942
Iter 612; theta = [1.01976122 0.99375071]; cross_e = 0.0004981319945529324
Iter 613; theta = [1.01979141 0.9937411 ]; cross_e = 0.00049803169766824
Iter 614; theta = [1.01982158 0.9937315 ]; cross_e = 0.0004979314421801456
Iter 615; theta = [1.01985175 0.99372189]; cross_e = 0.0004978312280628928
Iter 616; theta = [1.01988191 0.99371229]; cross_e = 0.0004977310552907912
Iter 617; theta = [1.01991207 0.99370269]; cross_e = 0.0004976309238381007
Iter 618; theta = [1.01994222 0.99369309]; cross_e = 0.000497530833679161
Iter 619; theta = [1.01997236 0.9936835 ]; cross_e = 0.0004974307847883134
Iter 620; theta = [1.0200025 0.9936739]; cross_e = 0.0004973307771399127
#In:
y_pred = sigmoid(X_test, theta) > 0.5
(y_pred == y_test).mean()
1.0